Medicina y Cirugía Oral y Maxilofacial: Medicina y Cirugía Oral y Maxilofacial

    

PHOTOGRAMMETRY, IMPLANT DIGITAL IMPRESION

XXII CONGRESS OF THE  EUROPEAN ASSOCIATION  FOR CRANIOMAXILLOFACIAL SURGERY
Prague Czech Republic 27-26 September 2014
Prague Congress Centre,
Nos consta, que el Paciente, se encuentra bien

Mascarilla Transparente

Fecha Registro Modelo Utilidad 10 de Octubre de 1986

Se llevó a efecto, además de para sus sus capacidades de aislamiento, en Quirófanos, UVIS, Salas de Hospitalización, etc., el que permitiera reconocer con facilidad, a su portador.
La irrupción en estas fechas iniciales del 2020 en China y algunos otros Países, del Coranovirus, nos ha llevado, tal y como se están produciendo los acontecimientos, el darla nuevamente a luz, para su posible aplicación, no solo, para su fin primordial de Protección. a niveles Asistenciales Sanitarios, sino también, en momentos más o menos ordinarios, en Aeropuertos y otros ambientes de Transporte e incluso, en el dia a día, que pueda darse, en situaciones de aglomeración o más convencionales.
Su fabricación estimamos, que para los tiempos que corren, no debería ser dificultosa, consiguiendo mantener sus capacidades de aislamiento, a las que se añadieran las de facilidad de reconocer a los portadores y para el intercambio interpersonal de forma más humana y afectiva.

Modelo de utilidad U9003517

BOLETÍN 02-2020 – PATRIMONIO UNIVERSAL DE LA HUMANIDAD. ANAMNESIS

Nuestro compañero Francisco Hernández Altemir ofrece la posibilidad de saber más acerca de este tema mediante la web
http://www.medicinaycirugiaoralymaxilofacial.info:

 

Submental endotracheal intubation: an alternative to short-term tracheostomy

January 2020
Journal of the Institute of Medicine
Department of Anaesthesiology, Tribhuvan University Teaching Hospital, Maharajgunj (NEPAL)

¡LOS ANIMALÍTOS TAMBIÉN SE MERECEN LA INTUBACIÓN SUBMENTAL!

Airway management by transmylohyoid endotracheal intubation in two cats with mandibular trauma

Pinchar aquí

EL POBRE Y EL RICO

Pinchar aquí 1

Pinchar aquí 2

NEUROSURGERY
46:6 | JUNE 2000 | 1416-1453 DOI: 10.1097/00006123-200006000-00025 1416 Anatomic Report Unilateral Upper and Lower Subtotal Maxillectomy Approaches to the Cranial Base: Microsurgical Anatomy Tsutomu Hitotsumatsu, M.D., Ph.D.1 , Albert L. Rhoton, Jr., M.D.1 1Department of Neurological Surgery, University of Florida, Gainesville, Flor
 
 
Upper maxillectomy The upper maxillectomy yields anterior access to the posterior part of the central cranial base that is limited by the Eustachian tube superiorly and the hard palate inferiorly, even after the pterygoid process is removed (Fig. 5, N–P). Retracting the ipsilateral pharyngeal wall to the opposite side with division of the Eustachian tube produces somewhat limited access to the clivus and C1. Downloaded from https://academic.oup.com/neurosurgery/article-abstract/46/6/1416/2925972 by Universidad de Zaragoza user on 02 January 2020 1449 Intracranial stage Upper maxillectomy Combining the upper maxillectomy with a frontotemporal craniotomy provides intradural access to the anterior and middle cranial fossae, the frontal and temporal lobes, and the basal cisterns by the subfrontal, pterional, pretemporal, and subtemporal routes (Fig. 5, L and Q). Removal of the greater sphenoid wing and floor of the middle cranial fossa opens the superior orbital fissure, foramina rotundum, ovale, and spinosum, and it accesses the lateral wall of the cavernous sinus (Fig. 5, M–R). Drilling the base of the pterygoid plate exposes the pterygoid canal inferomedial to the foramen rotundum. Entry to the sphenoid sinus is obtained by drilling its lateral wall between the ophthalmic and maxillary nerves, or by drilling the anterior part of the root of the pterygoid process above the pterygoid canal. However, the space between the pterygoid canal and foramen rotundum is limited (Fig. 5S). Continued extradural dissection to the posterior part of the middle cranial fossa exposes the anterior surface of the petrous temporal bone, the trigeminal ganglion in Meckel’s cave, and the greater and lesser petrosal nerves in their grooves on the floor of the middle fossa. Drilling the apex of the petrous temporal bone behind the petrous carotid with opening of the dura accesses the anterolateral aspect of the upper brainstem, although the exposure is very limited. Anterior transposition of the petrous carotid is required to reach the central part of the clivus from this lateral exposure. The lateral access is best suited to exposing lesions at the petroclival junction rather than those centrally located in the clivus. Lower maxillectomy The lower maxillectomy, with removal of the clivus and anterior elements of the upper cervical vertebrae, provides reasonable intradural access to the front of the pons, the medulla, and the cervical spinal cord above C4 as well as the basilar and vertebral arteries (Fig. 4, P–S). The vital structures that provide the lateral limits to the extradural bone removal and the intradural exposure include the petrous and intracavernous carotid, especially the artery on the ipsilateral side; the abducent nerve in Dorello’s canals, particularly the contralateral nerve located at the anterosuperior end of the petrous apex; and the hypoglossal canals and occipital condyles. Opening the basilar venous plexus, which crosses behind the upper clivus and the posterior wall of the sphenoid sinus, may result in profuse hemorrhaging. DISCUSSION Among the various anterior routes to the central cranial base, the route most frequently selected for lesions involving the lower clivus and adjacent vertebral bodies has been the transoral approach (12,13). The upper and middle portions of the clivus are also accessible by the Le Fort I transverse maxillotomy, and the additional median section of either the hard or both the hard and soft palates increases the clival exposure, although Cocke and Robertson (9 ) and Cocke et al. ( 10) conclude that the unilateral maxillectomy provides a more extensive exposure than some bilateral approaches, such as the Le Fort I (1,4,23,28). The hemimaxillectomy approach described by Hernández-Altemir (16) accessed both the transmaxillary and transoral routes. Subsequent modifications and extensions have provided added exposure of both the central and the lateral cranial base, permitting en bloc excision of large neoplasms by selecting and combining the osteotomies on the basis of the extent of disease (7,8,10,15,18,19,21). The osteotomies for completing the upper and lower maxillectomy approaches are divided into four basic units: maxillary body, orbital rim, hard palate, and zygomatic arch; and three extended units: coronoid process, pterygoid process, and frontotemporal craniotomy (Fig. 3). The maxillary sinus is a core space for these approaches through which the retromaxillary area can be reached without violating any vital structure, although the transantral route alone provides very limited exposure (11). Removal of the medial orbital rim provides access to the ethmoid and frontal sinuses, cribriform plate, and the anterior face of the sphenoid sinus through the medial orbital route as in the lateral rhinotomy or medial maxillectomy approach; however, temporary sectioning of the medial palpebral ligament and the nasolacrimal duct usually is necessary (27). If the osteotomy involves the lower orbital rim and floor, the infraorbital nerve must be transected. A palatal osteotomy combined with a cut through the maxillary body below the orbital floor enables transmaxillary access to be combined with transoral access, and increases the anterior exposure of the central cranial base. Zygomatic arch osteotomy facilitates the lateral exposure of the upper part of the infratemporal fossa and the middle cranial fossa by allowing reflection of division of the temporalis muscle. Transection of the coronoid process opens the lateral aspect of the infratemporal fossa and allows early exposure of the maxillary artery for control of bleeding, which is common during the maxillary osteotomy. The sphenoid pterygoid process separates the central from the lateral cranial base and blocks anterolateral access to the central cranial base. Removing the pterygoid process provides exposure extending from the central to the lateral cranial base and allows for wide anterolateral access to the clivus and upper cervical spine. The frontotemporal craniotomy, when combined with an orbitozygomatic osteotomy and removal of the floor of the middle cranial fossa, provides lateral access to the cavernous sinus, the sphenoid sinus, and the petrous apex extradurally, and the frontal and temporal lobes and the basal cisterns intradurally

ORGANIZACIÓN CURSOS VÍA AÉREA INDIA

How to arrange and conduct a successful CME event on airway management

Tanmay Tiwari1, Prem Raj Singh1, Tanya Tripathi2

ABSTRACT

Medicine is an ever-evolving branch of science, which requires regular teaching and training for the core purpose of patient safety. Physicians around the world are attending newer courses, workshops and continuing medical education (CME) programs to enhance their individual clinical skills. These courses offer much beyond the didactic lectures and are now routinely recommended by the regulatory authorities of most of the countries. This article will provide in-depth information for the conceptualization, planning and conduct of any educational medical course with a special reference to airway management. Key words: Accreditation, Airway, Anesthesiologists, Education, Physicians, Continuing medical education-

1Associate Professor, Department of Anesthesiology, King George’s Medical University, Lucknow, (India) 2Resident, Department of Pathology, Era Lucknow Medical College, Lucknow, (India) Correspondence: Dr. Tanmay Tiwari Assistant Professor Department of Anesthesia & Critical Care King George’s Medical University, Lucknow, (India) Email: tanmayanesthesia@gmail.com Phone: +91-9452526270 Received: 26 August 2019, Reviewed: 29 August, 7 September 2019, Revised: 4 September 2019, Accepted: 14 September 2019

Pinchar aquí

PREPARATION Academic program preparation: Academic or scientific schedule is the actual soul of the CME and workshop, therefore it should be attractive, with hot topics and with renowned speakers. Academic schedule for the course is decided by a core group of organizing team, comprising of senior anesthesiologists with sufficient teaching and working experience in the field of anesthesia. Academic schedule is usually divided into thematic sessions; Morning session of about 4 hours should comprise of keynote lectures, ‘how-I-do-it’ problem based case discussion, video session showing different approaches to airway management using various gadgets and techniques, and Afternoon session of 4 hours including hands on workshop on various workstations. Keynote lectures are allotted to senior academicians who have extensive experience in the field of airway management. These lectures should cover topics like ‘Airway Assessment- Current Status’, ‘Difficult Airway Guidelines’, ‘Ultrasonography (USG) of Airway’, Apneic Óxygenation’, and ; Extubation of Difficult Airway’. ‘How-I-do-it’ – Problem based case discussions are short case based scenarios of difficult airway; on topics which include airway management in morbidly obese, burns, pediatric cleft lip palate, head and neck trauma, temporo-mandibular joint ankylosis, upper airway malignancy, and pregnancy. For this session practical approaches to particular cases are discussed with special take home message content. The final session before lunch may be planned as a video session which showcases the tricks and special paper 320 ANAESTH, PAIN & INTENSIVE CARE; VOL 23(3) AUGUST 2019 techniques of multiple alternative approaches to difficult intubation like submental intubation, retrograde intubation, lightwand assisted intubation, blind awake nasotracheal intubation, percutaneous cricothyroidotomy and awake fiberoptic intubation. Post lunch afternoon session of the course may be planned for the interactive hands on workshops for participants at multiple workstations. Workstations (Table 1) provide an opportunity to the participants to be acquainted with different options available for airway management, from easier to the most difficult scenario, according to the Guidelines of Difficult Airway Society (DAS). The total duration of the CME + workshop may be from 0900 hours to 1800 hours in the evening (Total content hours of 8 hours + 1 hour break) in a day. Guest Faculty: We must aim to complete the scientific agenda with confirmed speakers. All official invites to the respective faculty members are sent 45 days before the course, so that they have ample time to prepare their talks. Faculty for the course may be selected from the host institution or other reputed national institutions. Some visiting international faculty can be an advantage. All the faculty are reminded from time to time and are requested to strictly comply with their allotted time for the talks. To avoid lapse in the program, few potential faculty from the organizing committee itself are kept in reserve and are asked to prepare a topic to be presented in case of failure of an invited faculty to attend the event. Announcement & Delegate Registration: A successful academic course or workshop requires a decent number of participants. Endorsement by professional bodies can be helpful, but dissemination of an impactful poster or brochure with original content of scientific agenda with renowned speakers on all available venues is required. To get maximum participation, details of the course need to be widely circulated in nearby hospitals, medical colleges and institutions using both print and electronic media. The course is also publicized through institutional website and electronic media through e-mails and WhatsApp messenger. The announcement posters must clearly mention essential information for the participants as given in Box 1. Box 1: Desirable information in announcement posters 1. The host institution 2. Title of the event 3. Venue 4. Day, dates and timings 5. Course director 6. National / local faculty 7. International faculty 8. Objectives 9. Who should attend 10. CME credits 11. Course program 12. Registration details; Fee; Bank account details special paper Table 1: Hands-on workstations and equipment required Workstation Equipment Workstation 1: Basic face mask techniques Face masks, Assorted types and sizes; Guedal oropharyngeal airway; Nasopharyngeal airway; Ambu bag; Airway manikin; Gel Workstation 2: Supraglottic airway (SGA or SGD) I-gel; Air-Q; LMA Classic; LMA Proseal; FasTrach,or the LMA Supreme. The LMA Unique; Combitube; Laryngeal tube; Airway manikin; Gel Workstation 3: Intubation; routine Endotracheal tubes, assorted sizes; McGill Laryngoscope handle, adult, pediatric; Macintosh laryngoscope blade, assorted sizes; Miller blade, assorted sizes; McCoy blades, two sizes; Intubation trainer manikin; Gel Workstation 4: Intubation; Difficult Endotracheal tubes, assorted sizes; Video laryngoscopes (rigid) VividTrac®, King Vision®, V-Mac® (Storz), C-Mac®, GlideScope®, McGrath MAC®, Pentax-Airway Scope® Airtraq®, Bonfils®, Bullard® laryngoscope, Ambu A-scope® ETView®, TruView®, Trachlight®, Shikani® Intubation trainer manikin; Gel Workstation 5: Intubation; Difficult Endotracheal tubes, assorted sizes; Flexible fiberoptic bronchoscope, adult, pediatric; Berman and Ovassapian airways; Intubation trainer manikin; Gel Workstation 6: Surgical airway Cricothyroidotomy set; Cricothyroidotom